766

The Content-Aware Caching for Cooperative
Transcoding Proxies

Byoung-Jip Kim, Kyungbaek Kim, and Daeyeon Park

Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST),
373-1 Kusong-dong Yusong-gu, Taejon, 305-701, Korea
{bjkim, kbkim}@sslab.kaist.ac.kr
daeyeon@ee.kaist.ac.kr

Abstract. The Web is rapidly increasing its reach beyond the desktop
to various devices and the transcoding proxy is appeared to support web
services efficiently. Recently, the cooperative transcoding proxy archi-
tecture is proposed to improve the system performance to cope with the
scalability problem of a stand-alone transcoding proxy. However, because
of the multiple versions, the communication protocol of the cooperative
caches is very complex and causes additional delay to find best version
for a requested object.

In this paper, we propose efficient cooperative transcoding proxy archi-
tecture which uses the content-aware caching. The main purpose of the
proposed system is simplifying the communication protocol of cooper-
ative caches. We associates a home proxy for each URL and the home
proxy is responsible for transcoding and maintaining multiple version of
an URL. This mechanism reduces the amount of messages exchanged and
communication latency involved. To prevent the hot-spot problem, each
proxy cache has the private cache which stores the recently requested
objects. We examine the performance of the proposed system by using
trace based simulation with Simjava and show the effective enhancement
of the cooerative transcoding proxy system.

1 Introduction

In recent years, the technologies of the network and the computer have developed
enormously and the diverse devices such as PDAs, mobile phones, TVs and etc
which are connected to the network with various ways such as wired or wireless
interfaces. These diverse devices have been able to use the web contents, but
some clients can not use the web contents directly because their capabilities dif-
fer from those of the web content provider’s expectation. For these clients, the
content adaptation, called the transcoding, is needed. This transcoding trans-
forms the size, quality, presentation style, and etc of the web resources to meet
the capabilities of the clients. The main features of the transcoding can be sum-
marized with two. First is that multiple versions exist for the same web content

C. Kim (Ed.): ICOIN 2005, LNCS 3391, pp. 766-[75] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.4
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.4
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

The Content-Aware Caching for Cooperative Transcoding Proxies 767

due to the diverse client demand. Second is that the transcoding is a very compu-
tational task. These two features of the transcoding bring many issues to design
a transcoding system.

The existing approaches of the transcoding system can be classified into
three categories broadly, depending on the entity that performs the transcod-
ing process: client-based, server-based, and intermediary-based approaches. In
the client-based approaches, the transcoding is performed in client devices and
the transcoder has direct access to the capabilities of the various devices. How-
ever, these approaches are extremely expensive due to the limited connection
bandwidth and computing power of clients. Conversely, in the server-based ap-
proaches, the content server transforms objects into multiple versions on online
or offline. These approaches preserve the original semantic of the content and
reduce the transcoding latency during the time between the client request and
the server response. However, keeping the multiple versions of an object wastes
too much storage and the content providers actually can not provide all kind of
versions of contents for the diverse clients. In the intermediary-based approaches,
edge servers or proxy servers can transform the requested object into a proper
version for the capability of the client before it sends the object to the client.
These approaches need additional infrastructures in the network and the addi-
tional information (e.g., client capability information, semantic information of
contents). Although these additional needs exist, this intermediary-based ap-
proaches address the problems of the client-based and server-based approaches
and many researches have been emerged.

Although the intermediary-based approaches are considered most appropri-
ate due to their flexibility and customizability, they have some system issues to
be addressed. Because the costly transcoding has to be performed on demand
in proxy servers, the scalability problem arises. To address the scalability prob-
lem and improve the system performance, researchers have proposed caching
the transcoding results. Because of the cached results, we can reduce repeated
transcoding tasks and the system performance can be improved. Recently, the
cooperative transcoding proxy architecture is proposed to improve the system
performance[3/[4]. However, applying the traditional cooperative caching directly
to the transcoding proxy architecture is not efficient due to inherent problems
of the content transcoding such as multiple versions of contents[15]. Because
of the multiple versions, the communication protocol of cooperative caches is
more complex than existing protocols, such as ICP and causes additional delay
which is incurred by finding more similar version of an object during the time for
discover the object in cooperative caches. Additionally, each cooperative caches
consumes too much storage to store redundant multiple versions for the same
object. These hurdles decrease the system performance and utilization.

In this paper, we propose the efficient cooperative transcoding proxy archi-
tecture which uses the content-aware caching. The main purpose of the proposed
system is simplifying the communication protocol of cooperative caches. To cope
with the problem which is caused by the multiple version, we propose that every
version for an object is stored at one designated proxy together. Each transcod-

768 Byoung-Jip Kim, Kyungbaek Kim, and Daeyeon Park

ing proxy is mapped with the hashed value of the URL and a proxy stores its
transcoded result at the designated proxy which is mapped with the URL of
the requested object. By using this concept, we gather the whole of the version
for an object in its designated proxy, so called a home proxy, and find the best
version for an object deterministically. According to this behavior, every version
of an object resides at one designated proxy and the discovery process becomes
simple.

While the proxies store objects deterministically, they should fear for the hot
spot problem; a small fraction of objects will be hot which could lead to excessive
load at nodes which are their homes. To prevent this overload, we divide a cache
storage into two; public storage and private storage. The general content-aware
caching mechanism uses the public storage which is used to find the best version
of the requested object. The private storage contains the hot objects of the local
clients. If the requested object is found in the private storage of a local proxy,
there is no need to check the public storage of the home proxy. That is, we reduce
the load of the home proxies of hot objects.

Moreover, we refine the cooperation mechanism for the proposed system to
perform more efficiently. There are three main processes: the discovery process,
the transcoding process and the delivery process. We exploit the characteristics
of the content-aware caching to make the discovery process simpler than the
previous process and design the transcoding process to increase the performance
of the proxies. By using the redirection in the delivery process, we reduce the
network traffic which is needed to manage the system.

We evaluate the performance of the proposed system by using trace based
simulation. We use the Simjava to simulate the cooperative transcoding proxy
system. We compare the system response time, the cache hit ratio and the
communication cost between the previous cooperative caching and the pro-
posed content-aware caching and show that the performance increases when
the content-aware caching is used.

The rest of this paper is organized as follow. Section] briefly represent
the related works and the problem of them. Section [3 presents our proposed
architecture for cooperative transcoding proxy. The performance evaluation is
on section @ Finally, we concludes this paper on section

2 Background

In recent years, some proposals have exploited both of transcoding and caching
to reduce the resource usage at the proxy server, especially for transcoding time.
The main idea of these approaches is that caching the transcoding results im-
proves the system performance by reducing the repeated transcoding operation.
Moreover, some studies extend a stand-alone transcoding proxy to cooperate
each other to increase the size of the community of clients. This cooperative
caching increases the hit ratio of the cache system by cooperating with each
other caches for discovery, transcoding and delivery. As result of the increased
hit ratio of system, it reduces not only the repeated transcoding operations, but
also the user perceived latency for an object.

The Content-Aware Caching for Cooperative Transcoding Proxies 769

Local Miss
Y5/01
‘/‘ﬁ--_____b Traditional
Coop. %“W}«w gVethoop.
B TTrmeensader T e . ache

Trans.
Cache

Proxy 1 Proxy 2 Proxy 3 Proxy 4

Fig. 1. The discovery process of the cooperative transcoding proxies

The transcoding proxy should manage the multiple version of an object,
because the transcoding results depend on the various capability of clients. Ac-
cording to the multiple versions, there are two types of hit; exact hit and useful
hit. The exact hit means the proxy cache contains the exact version required by
the client, and the useful hit means the proxy cache does not have the exact
version of the requested object but contains a more detailed and transcodable
version of the requested object that can be transformed to obtain a less detailed
version that meets the client request.

These two types of hits make the communication protocol of cooperative
caches, especially the discovery protocol, more complex than existing protocols,
such as ICP. Figure [[] shows the difference of the discovery process between the
cooperative transcoding proxies and the traditional web proxies. The proxy 2
gets a request for an object, O1, whose version is the version 5, V5, and misses
the object, then the proxy 2 sends queries to other proxies to find the object.
If we use the traditional web proxies, the discovery process is over after getting
any object from any proxy. In this figure, the proxy 1 or 3 returns the object
O1 to the proxy 2 and the process is over. However, if we use the transcoding
proxies, we should consider not only the object but also the version, then we
have to wait for the best version that minimize the transcoding operation. In
this figure, though the proxy 1 and 3 return the objects with version V1 and
V4, the proxy 2 does not know that the proxy 4 has the exact version and has
to wait for the responses from proxy 4. After the proxy 2 gets all responses form
all proxies, it chooses the proxy which has the best version, in this figure the
proxy 3, and sends a query to get the object itself. This behavior takes for long
time to determine the best version that minimize the transcoding operation
because a local transcoding proxy have to wait for potentially better version.
Also, it generates enormous query messages to discover an object. That is, each
transcoding proxy has to process redundant query messages for every discovery
request.

770 Byoung-Jip Kim, Kyungbaek Kim, and Daeyeon Park

3 Main Idea

3.1 Content-Aware Caching

We mentioned the problems of the query-based discovery protocol of the co-
operative transcoding proxy in the section 21 A cause that a proxy waits for a
potentially better version is that each version of the same content resides irregu-
larly at different proxies. In this situation, a proxy should send queries to every
proxy to discover the best version because it does not know which proxy has the
best version of the content. However, if the different versions of a content are
cached together at the designated proxy, a proxy can determine the best version
of a content with only one query message.

Each proxy has to store transcoded versions of an object at designated proxy
being aware of the object. We would refer this caching scheme as content-aware
caching. In content-aware caching, a transcoding proxy stores its transcoded
results at a designated proxy according to the URL of objects. Then, every
version of the same URL is stored at a designated proxy. We would refer this
designated proxy as a home prozy of an objects. Each URL is mapped into its
home proxy by using URL hashing. The 128bit ID space is generated by the
hash function which balances the ID with high probability such as SHA-1 and
each proxy which is the participant of the system manages the partial ID space
which is determined by the proxy node ID that is computed by hashing the
unique value of node such as an ip address. Each object has the object ID which
is obtained by hashing the URL of the object and is stored at the home proxy
that manages the object ID.

This content-aware caching has several advantages. First, a proxy can dis-
cover the best version of an object deterministically. A proxy can find the best
version at a home proxy with only one query and does not wait for potentially
better version after it receives an exact or useful hit message. Second, the redun-
dant query processing is reduced significantly. In the previous system, a proxy
sends a query to every peer proxy, and each proxy which receives a query per-
forms the query processing to find a proper version of an object. However, in
the content-aware caching system, only home proxy performs query processing.
Third, the network traffic is reduced because the number of query messages is
reduced significantly.

3.2 Prevention of Hot Spot

When we use the content-aware caching, the request for an object is always
forwarded to the home proxy. If the hot spot for an object occurs, the home proxy
which has the responsibility for the object has to deal with every request and
the home proxy is overloaded and out of order. To prevent this case, we divide
a cache storage into two : public storage and private storage. The public storage
is used to store the every version of an object for the content-aware caching and
the private storage is used to store the hot objects of the local clients. That is,
a proxy stores the clusters of version for objects whose object IDs are managed

The Content-Aware Caching for Cooperative Transcoding Proxies 771

Request to
origin server

Proxy A i
Y (3)Discovery (4) Check
Public
(2) Check Cache w
Private update Proxy B

Response
from
Public

Fig. 2. Overall of the Content-aware caching system

by itself in the public storage and caches the frequently requested objects from
the local clients in the private storage.

Figure 2] shows the overall of the cache architecture and the cooperation
mechanism. When a proxy receives a request (1), it first checks its private storage
(2). If a exact hit occurs, the proxy returns the object to the client. However,
if either a local useful hit or a local miss occurs, the proxy tries to discover a
matched transcoded object at the home proxy of the requested object (3). Then,
the home proxy checks its public storage for the object (4). If there is the object
which is exact or useful, the home proxy transforms the object into the exact
version and returns the object to the client, and updates the private storage of
the local proxy if the home proxy decides that the object is frequently requested.
Otherwise, if a miss occurs, this proxy gets the new object from the origin server.
According to this behavior, the hot objects reside at the local private storage
with high probability and we can reduce the excessive load of the home proxies
of the hot objects.

3.3 Cooperation Mechanism

There are mainly three cooperation processes: the discovery process, the transcod-
ing process, and the delivery process. The first, the discovery process takes ad-
vantages of the content-aware caching. In our proposed system, different versions
of the same content are cached together at the public storage of the home proxy.
If a proxy gets a request and a miss occurs at the private storage, it need not
send queries to every peer proxies but send only one query to a home proxy of
the requested URL. Therefore, in the discovery process, we can reduce not only
the query messages but also the waiting time for finding a potentially better
version. Moreover, because the home proxy could have almost versions of an
object, the exact hit ratio increases and the system performance would increase.

When we find the useful object in the public storage of the home proxy, we
should decide the location of the transcoding. If the local proxy which gets the
request from the client performs the transcoding, it has to update the public

772 Byoung-Jip Kim, Kyungbaek Kim, and Daeyeon Park

storage of the home proxy because the home proxy manages the whole version
of an object. That is, we preserve the advantage of the discover process by using
this redundant traffic. According to this, we performs transcoding task for the
requested object at the home proxy to eliminate the redundant transmission.

After the transcoding task, the new version of the object is stored at the
public storage of the home proxy. If the home proxy returns the new object to the
local proxy and the local proxy returns it to the client, this indirect transmission
causes the redundant object transmission that generally makes the response time
long. To prevent this redundant traffic and reduce the response time, the home
proxy redirects the response to the client which request the object. When the
local proxy forward the request to the home proxy, the forwarding message
includes the redirection information. However, this redirection mechanism can
cause the hot spot problem at the home proxy. To cope with this problem, the
home proxy has to update the private storage of the local proxy. If the exact hit
occurs at the public storage, the home proxy checks how frequently the object
is requested. If the object is decided as a hot object, the home proxy sends
this object to the local proxy which requests it and the local proxy stores it at
the private storage. This cache update policy compensates the effect of the hot
objects with the local private storage.

4 Evaluation

4.1 Simulation Setup

We simulate the cooperative transcoding proxy architecture to evaluate its per-
formance. We use Simjava to simulate the architecture. Simjava is a toolkit for
building working models of complex systems. It is based around a discrete event
simulation kernel [6].

We try to reflect the real environment in our simulation as accurate as pos-
sible. We examine the previous papers on the cooperative caching to extract
the simulation parameters [7]. The size of a cache storage is 300MB and 30%
of the total storage is assigned to the public storage. We use 4 caches which
are cooperated with each other and use the LRU replacement policy. The es-
tablishing HTTP connection takes 3 msec and the cache lookup needs 1.5 msec.
The processing the ICP query need 0.3 msec and the hashing calculation for the
content-aware caching takes 0.6 msec. The transmission time to content server
takes 300 msec as average and the transmission time in local backbone network
takes 40 msec as average. The simulation parameters about the transcoding op-
eration are extracted from the previous paper [5]. The transcoding takes 150
msec as the mean value and 330 msec as the 90th percentile.

We use a trace file of IRCache [2]. The trace date is October 22, 2003 and the
total duration is 1 day. The total number of requests is 416,015 and the mean
request rate is 4.8 requests per second. We assume that the 100 clients use one
proxy cache and consider a classification of the client devices on the basis of their
capabilities of displaying different objects and connecting to the assigned proxy

The Content-Aware Caching for Cooperative Transcoding Proxies 773

Device type||PC|Laptop|TV Browser/PDA|Mobile phone
Percentage |[40%| 15% 15% 15% 15%

Table 1. Client device types and population

| 900 m—
=== | B No cooperation
/ " | m Query-based
ns —_— 1o f—p {0 content-aware
06 / -
g /.."! E 500 f——rti
2 s 7.2 . - % |
] 7 i ~ Content-aware E 0
. oz —w—v{w‘-.—- e = Query-based 00—l =
,,)";. No 0 — —
o o |l
] 250 S0 70 0 im0 180
]
02
Time (msac) Mean Median
(a) Cumulative distribution (b) Mean and Median

Fig. 3. The comparison on the system response time

server. The classes of devices range from high-end workstations/PCs which can
consume every object in its original form, to mobile phones with very limited
bandwidth and display capabilities. We introduce five classes of clients. Table [I]
shows the client types and their population.

4.2 System Response Time

The system response time is the time between sending requests of clients and
receiving of responses of clients and it is generally used as a criterion of sys-
tem performance. Figure [3 shows the comparison on the system response time.
It shows clearly that the cooperative architecture provides better performance
than the stand-alone architecture. Also, it shows that the content-aware coop-
eration architecture provides better performance than the query-based cooper-
ation architecture. The 90th percentile of the response time is similar between
the content-aware architecture and the query-based architecture. However, the
median of the response time is much better in the content-aware architecture.
The main reason of the different response times is the cooperative discovery
protocol. The query-based discovery protocol has a problem of a long decision
time due to the two-phase lookup. To address this problem, we proposed content-
aware caching mechanism and this significantly reduces the decision time in the
multiple-version lookup. Therefore, the performance of the system increases.
However, the 90th percentile is similar because the global cache miss causes
the long round-trip time to the original server. This long round-trip time is the
system bottleneck for both architectures. Although the content-aware coopera-

774 Byoung-Jip Kim, Kyungbaek Kim, and Daeyeon Park

100% — — —

90% i —
oox = s |
0% (=i
1 [Global miss
BO% T e 2198 e [1 Remote{Home) useful hit
50% —— [~ | 0 Remote{Home) exact hit
4% —— O Local useful hit
0% —— T B Local axcat hit
2% — nx .
(AL

0% 10.28 o)
R = U 1) I ¥

No Query-based Content-aware

cooperation

Fig. 4. The comparison on the cache hit ratio

tive architecture provides fast decision in multiple-version lookup, the dominant
factor of the long transmission time from content server to a proxy server causes
long user response time. Therefore, high hit ratio of a proxy cache is important.

4.3 Cache Hit Ratio

Cache hit ratio is the important factor that affects the system performance of
the transcoding proxy. A cache in the multiple-version environment has three
different event: an exact hit, a useful hit, and a miss. The high exact hit ratio
improves the system performance by eliminating the transcoding overhead that
generally involves a long processing time. The high useful hit ratio improves
the system performance by reducing the redundant transcoding process. The
high cache miss ratio degrades the system performance since this case needs
the content transmission from a content sever to a transcoding proxy and the
complete transcoding task.

Figure [] shows the cache hit ratio of each scheme. The cooperation schemes
provide much higher ratio of both an exact hit and a useful hit. The hit ratio
of the content-aware scheme is slightly higher than the query-based scheme. In
the query-based scheme, the exact hit ratio of the local cache is 9.01% and the
exact hit ratio of the remote cache is 23.89%. In the content-aware scheme,
the exact hit ratio in the private storage is only 6.71% which is smaller than
the query-based but the exact hit ratio of the public storage is 29.35% which
is much bigger than the query-based. Even if the local exact hit ratio of the
content-aware scheme is smaller, the main factor of high exact hit ratio is the
remote exact hit ratio for both schemes. In this case, the global lookup process of
the query-based scheme causes the long decision time due to two-phase lookup
in the multiple-version environment mentioned in the section 2l However, the
content-aware scheme finds the exact object with the simple discovery process
which takes only one query to the home proxy. Therefore, the content-aware
scheme can provide better performance than the query-based scheme.

We can see that the useful hit ratio is increased in case of the content-aware
cooperation architecture. The reason is that each useful version is clustered to be

The Content-Aware Caching for Cooperative Transcoding Proxies 775

discovered directly in the content-aware cooperation architecture and they use
the cache storage more efficiently without the redundant copies. Additionally,
in the content-aware scheme, the local useful hit ratio is 0 because the private
storage is used to find the exact objects only.

5 Conclusions

In this paper, we propose the efficient cooperative transcoding proxy architec-
ture which uses the content-aware caching. We cope with the problem which is
caused by the multiple version environment by using the content-aware caching,
which means that every version for an object is stored at one designated proxy
together. The proposed architecture makes the communication protocol between
each proxies simpler, especially the discovery process and reduces the number of
messages which are used to maintain the cache system such as ICP queries and
object responses. Moreover, because of gathering all versions of an object at one
proxy, the exact hit ratio increases and the performance of the system increases
too. This architecture has an improvement of 20 percentage points of response
time, an increase of 10 percentage points of cache hit ratio, and improved scal-
ability on bandwidth consumption. Though the many advantages exist, the hot
spot problem can be appeared. We prevent this problem by using the private
cache and the cache update policy. The detail of the cache update policy is our
ongoing work.

References

1. V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu. A distributed architecture
of edge proxy servers for cooperative transcoding In Proc. of 3rd IEEE Workshop
on Internet Applications, June 2003.

2. TRCache project, 2003. http://www.irchache.net

3. A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy. TransSquid:
Transcoding and caching proxy for heterogeneous e-commerce environments In Proc.
of 12th IEEE Int’l Workshop on Research Issues in Data Engineering, pages 50-59,
Feb. 2002.

4. A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy. PTC: Prozies that transcode
and cache in heterogeneous Web client environments In Proc. of 3rd Int’l Conf. on
Web Information Systems Engineering, Dec. 2002.

5. C. Canali, V. Cardellini, M. Colajanni, R. Lancellotti, P. S. Yu. Cooperative Archi-
tectures and Algorithms for Discovery and Transcoding of Multi-version Content In
Proc. of 8th Int’l Workshop on Web Content Caching and Distribution, Sep. 2003.

6. F. Howell, R. McNab. SimJava: a discrete event simulation package for Java with
applications in computer systems modeling In Proc. 1st Int’l Conference on Web-
based Modelling and Simulation, San Diego CA, Society for Computer Simulation,
Jan. 1998.

7. C. Lindemann, O. P. Waldhorst. Fvaluating cooperative web caching protocols for
Emerging Network Technologies In Proc. of Int’l Workshop on Caching, Coherence
and Consistency, 2001.

	Introduction
	Background
	Main Idea
	Evaluation
	Conclusions

